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Abstract 

We present a modification of the Dirac equation that allows us to formulate a relativistic 
quantum mechanics for spin-�89 fermions in an external electromagnetic field, with a 
probabilistic interpretation similar to that in nonrelativistic quantum mechanics and 
based on an indefinite charge density. We find that stationary states cannot be interpreted 
in this manner, and we replace them by quasistationary states. We also include a general 
discussion of the difficulties and possible generalizations of this approach. 

1. Introduction 

Very soon after the formulation of nonrelativistic quantum mechanics, 
which is covariant under Galilean transformations, attempts were made to 
generalize it to a relativistic formulation, covariant under Lorentz trans- 
formations, which, after all, were known to be the more generally valid 
ones. The results are typically represented by the Klein-Gordon equation, 
which describes spin-0 particles, and the Dirac equation, for spin-�89 
particles. 

Immediately a number of  difficulties were discovered, connected with 
either or both these equations, which led to unsatisfactory interpretations 
and to the practical abandonment of relativistic quantum mechanics in 
favor of  the theory of quantized fields. 

The Klein-Gordon equation was originally rejected for two main 
reasons. A probability density could not be found that was positive and 
that gave rise to a conserved probability, and it was a second-order equation 
in time, which required a doubling of the amount  of  information needed 
to specify the state at a given time. Later on, it was reinterpreted (Pauli & 
Weisskopf, 1934; Feshbach & Villars, 1958) by changing the notion of 
probability density to that of  a charge density, which could describe both 
a particle and its antiparticle, explaining, incidentally, the increase in the 
amount  of information needed to determine a state. Nevertheless, no 
probabilistic interpretation along the lines of the one generally accepted 
in nonrelativistic quantum mechanics was suggested, until we recently 
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formulated one (Marx, 1969a) for a charged scalar particle in an external 
electromagnetic field. We based this interpretation on the use of the causal 
Green function or Feynman propagator for the Klein-Gordon equation, 
and the idea of Stueckelberg and Feynman, that an antiparticle is a particle 
'going' backwards in time. We further showed (Marx, 1970a) how this 
theory could be extended to several identical particles, with the help of 
Dirac's many-time formalism. The resulting theory deals with a fixed 
number of particles, while allowing at the same time for pair creation and 
annihilation. 

The Dirac equation initially replaced the Klein-Gordon equation because 
it yielded a positive probability density and was a first-order equation in 
time, although this feature was introduced at the cost of not just doubling 
but quadrupling the number of amplitudes. This was later successfully 
interpreted in terms of the spin of the electron and its antiparticle, the 
positron. But other severe diff• in its interpretation were not satis- 
factorily explained, unless one accepts such awkward devices as the hole 
theory of the positron,t particularly unsuited in a one-particle formulation. 
On the other hand, our probabilistic interpretation could not be extended 
to the Dirac field precisely because it had a positive probability density 
instead of an indefinite charge density. We could obtain the desired type 
of charge density if we used the Klein-Gordon equation for four-component 
spinors (Marx, 1967) or two-component spinors (Marx, 1970c), but the 
former is not appropriate for electromagnetic interactions, which remain 
essentially unchanged (Marx, 196%) while the number of amplitudes is 
doubled again to eight, and the latter requires the explicit introduction of 
the observer in the theory and changes somewhat the nature of the inter- 
action. In this paper we propose another modification of the Dirac equation, 
in the form presented in Section 2, that leads to an indefinite charge density 
while introducing only a change of sign in the interaction, as shown in 
Section 3. 

It is also open to question why one should make a sizable effort to find a 
consistent theory for a relativistic quantum mechanics, when these problems 
disappear in the usual formulation of quantum field theory. There are 
several reasons why we feel that this should be done. The vaguest and most 
general one is that there is a place in the hierarchy of physical theories 
for a relativistic quantum mechanics, and there is no reason to leave this 
area unexplored. A more technical reason refers to the difficulties which 
still beset quantum field theory in its various forms, in particular divergences 
and a general lack of either a firm mathematical background or practical 
computational procedures, and its limited success outside of quantum 
electrodynamics. We can restrict ourselves to the use of normalized states, 
and the fact that we are dealing with a fixed number of variables excludes 
the occurrence of certain divergences, related to closed fermion loops in 
quantum electrodynamics. Also, the quantization of fermion fields cannot 

t See, for instance, Bjorken & DreU (1964). 
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be carried out quite according to the canonical procedures (Marx, 1969b), 
and anticommutators usually have to be introduced as an afterthought. 
Even in Fock space (Marx, 1970b), antieommutators are introduced most 
naturally in terms of particle amplitudes. Finally, the fact that fermion 
lines in Feynman graphs are never broken, a consequence of conservation 
of angular momentum, suggests that it might be possible to treat fermions 
as particles, coupled to classical or possibly quantized boson fields. 

It is also customary to formulate eigenvalue problems in terms of the 
Klein-Gordon (Bethe & Jackiw, 1968) and Dirac (Bjocken & Drell, 1964) 
equations, and the eigenvalues of the latter are in good agreement with 
the energy levels of the hydrogen atom. But once again a probabilistic 
interpretation of the corresponding eigenfunctions is either not possible or 
unreasonable. We find that this continues to be the case in our formulation, 
and in Section 4 we present an alternative approach in terms of quasi- 
stationary states. 

We finish this paper with a general discussion of problems and perspec- 
tives of our approach in Section 5. 

We use natural units, the time-favoring metric in space-time, and the 
modified summation convention for repeated lower Greek indices. Other 
notation used is the same as in Marx (1968, 1969a). 

2. The Dirac  Equation 

We take as our point of departure the Dirac equation for the wave 
function ~b(x) for a particle of charge - e  in an external (given) electro- 
magnetic field A , ( x ) ,  

( - i D l y ,  + rn)~b = 0 (2.1) 

where 

D t, = O u - ieA t, (2.2) 

The study of the position operator (Schr6der, 1964) and the angular 
momentum (Marx, 1968) of the free Dirac field clearly indicates that the 
proper choice for probability amplitudes in momentum space is the usual 
set of ba(p, t) and da(p, t) in equation (M-46),t which become operators in 
a quantum field theory. In configuration space we use g(x) ,  formed by the 
two-component spinors g(+)(x) and g(-)(x)  defined by equations (M-56) 
and (M-57), which are independent of our choice of spin states. They 
are related to ~b(x) by a Foldy-Wouthuysen transformation (Foldy & 
Wouthuysen, 1950; Bjocken & Drell, 1964) 

(lz + m]"2 (1 + iV .W 
= ( )o(x) (2.3) 

t By equation (M-46) we mean equation (46) in Marx (1969a). 



404 EGON MARX 

m ',2I iV.V_1 ) t e+,,,j+<x) 
where/~ is the integral operator 

-E = +(-V z + m2) 1/2 (2.5) 

We keep the relation (2.3) or (2.4) between ~b and g even in the presence 
of an interaction. The approximate forms of the Foldy-Wouthuysen 
transformation in theft case still seek to diagonalize the Hamiltonian, while 
we want to obtain a coupling between positive and negative frequency 
amplitudes. Equation (2.1) reduces to 

ip,(x) = H'  g(x) (2.6) 
where 

".V 
H ' = y o E - e \ ~ ]  Ao E + m A o ~ + m  

~ . V  ~ . . .A+ iyo~ .A  ~ . V  + "  y .V  
+ iY~ E + m E + m M~ E - ~ m  (2.7) 

. y .V  ot.V ot A ot.V.] ( E + m ]  li2 
- t - , . .  A o  - o ~ . A  - -_ 

E + m E + m " E + m ] \ - -2 f f - /  

We note that the above H '  is Hermitian with respect to the scalar product 

(g, g')' = f d3xg*g ' (2.8) 

which implies that the (positive) quantity 

N =  f d'x~b* ~b = f d3xg* g (2.9) 

is conserved. This leads to the interpretation of ~br ~b as a probability density, 
but we again (Marx, 1969a) note that it is not equal to g~g, and that neither 
leads to a consistent probabilistic interpretation of the wave function when 
the field is not free. In particular, when we set N (+), defined by 

N(+) = f d3xp(+)(x), p(+) = g(+)tg(+) (2.10) 

equal to 1 initially, and N (-), defined by 

N (-) = f d3xp(-)(x), p(-) = g(-)~g(-) (2.11) 

equal to 0 finally, equation (M-62) shows that N (+) is greater than I finally, 
and cannot be interpreted as a probability. I f  we use a retarded Green 
function instead of a causal one, we can set N (+) equal to 1 and N (-) equal 
to 0 initially; then both N (+) and N (-) are positive, add up to 1 finally, 
and could be interpreted as probabilities for particles and antiparticles. 
But the charge, which is the difference between the two, is clearly less than 
1, violating one of the most basic conservation laws of physics. 
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3. Modification o f  the Dirac Equation 

The above-mentioned difficulties are eliminated in the quantized theory 
of the Dirac field when the wave functions become anticommuting opera- 
tors, and the charge operator is antisymmetrized or normal-ordered. The 
latter operation is well defined only for the free field, or for the field opera- 
tors in the Dirac picture. Anticommuting creation operators also make 
the phase of a state vector dependent on the order in which these operators 
act on the vacuum to produce the state. These creation and annihilation 
operators closely correspond to the negative and positive frequency parts 
of the field and its Hermitian conjugate. 

On the othe r hand, if we want to extend our probabilistic interpretation 
to the relativistic quantum mechanics of spin-�89 particles based on the 
Dirac equation, we must modify it in such a way that the charge 

Q = - e  f d3x(p ~+) - pc-)) (3.1) 

be a conserved quantity. This is the case when the Hamiltonian is a self- 
adjoint operator with respect to the indefinite metric 

(g,g')  = f d3xg*~'og' (3.2) 

which H '  given by equation (2.7) is not. In the notation used in connection 
with an indefinite metric, the new Hamiltonian H has to satisfy 

H* = Y0 H* Y0 -- H (3.3) 

where the star indicates the adjoint with respect to the metric (3.2), and 
the dagger indicates the Hermitian conjugate with respect to the positive 
metric (2.8). In submatrix notation, equation (3.3) becomes 

-/t+*_ He_} 
We try to remain close to the successful results of quantum electrodynamics, 
and limit ourselves to a change of signs in the interaction Hamiltonian. 
It is easy to see that it is sufficient to replace either H+_ or H_'+ by its 
negative in equation (2.7). It is irrelevant which one is chosen, since changing 
the signs of both off-diagonal terms is equivalent to changing the sign of 
either g~+) or g~-). We replace H+_ and obtain 

(E-}- m) 1/2 ( ZoV A o ~ . V  
H = y 0 / ~ - e  ~ A0 /~+m + m  

Y..V Y. V a .V 
+ t'yo ~ + rn~.A + iyo y ' .A-~E+m-tA0~+m" " (3.5) 

P+m v'A 
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In this simple manner we have obtained a theory with an indefinite charge 
density and a conserved charge. We can thus extend the probabilistic 
interpretation of scattering in an external field for one or several identical 
particles, as presented by Marx (1969a, 1970a, 1970c), to spin-�89 fermions 
that obey a slightly modified Dirac equation. The wave functions for 
several fermions have to be antisymmetric in all groups of variables, and 
the states of particles have to be specified at the initial time, while those of 
antiparticles must be given at the final time. 

The form in which the equation has been cast does not lend itself to the 
determination of the transformation laws of g under restricted Lorentz 
transformations (other than ordinary rotations) and gauge transformations. 
Although we have started from a Lorentz and gauge invariant equation, 
we cannot easily ascertain the effects of the change of sign of H+_. In any 
event, a Lorentz transformation should not mix g(+) and g(-), while charge 
conjugation should exchange them. We find that under the latter, g(x) 
goes to t  

g'(x) = i~2 g*(x) 

since 

(3.6) 

(3.7) 
(3.8) - i~2 H*(e)  (i~2) -1 = H ( - e )  

where changing the sign of e is equivalent to replacing d~(x) by 

A S ( x  ) = - A ~ ( x )  (3.9) 

In other words, when g(x) is a solution of the Schr6dinger equation with 
given fields A u, equation (3.6) provides a solution when all the components 
of the fields change sign. We also note that the helicity spinors obey 

i~2 x-%(P) = ~x~(P) (3.10) 

Another important transformation is time reversal, which affects the 
fields and the coordinates. It is given by 

x'  = x, t '  = - t  (3.11) 

Ao'(x ' )  = A0(x), A'(x')  = -A(x )  (3.12) 

g'(x ')  = i~h y3g*(x) (3.13) 

which is essentially$ the choice in the usual Dirac theory, since we still have 

i~,1 r3 H*(x)  (i~,1 ~,3) -1 = H(x') (3.14) 

This time reversal operation does not interchange particle and antiparticle 
amplitudes; it can be combined with charge conjugation to obtain the so- 
called strong time reflection. 

t The change in the Hamiltonian brings about the replacement of iy2 by ia~ in equation 
(3.6), which has the somewhat puzzling effect of changing the sign of g under two suc- 
cessive charge conjugations. The asterisk indicates the complex conjugate. 

:~ The only difference is the factor i, which is determined by the transformation proper- 
ties of the charge conjugate solution. 
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4. Quasistationary States 

One of the principal problems in nonrelativistic quantum mechanics is 
the determination of bound states. These are eigenstates of the Hamiltonian, 
which is independent of time, corresponding to negative eigenvalues and 
eigenfunctions that vanish at infinity. This has been formally extended to 
the relativistic equations (Bjocken & Drell, 1964; Bethe & Jackiw, 1968), 
but without attaching any consistent interpretation in terms of probability 
densities to the eigenfunctions. A simple fact that points out the difficultiest 
is that an electron can be bound in the field of a nucleus, while a positron 
cannot; if they are mixed in the wave function, it appears unnatural for 
a positron to be found near the nucleus. 

Furthermore, the whole idea of a time-independent Hamiltonian and a 
central potential is ill-suited for a relativistic treatment; and is usually 
considered only as an approximation to the real situation. A more realistic 
treatment would involve not only a wave function for both particles, but 
also a dynamical (as opposed to external) electromagnetic field. 

Our probabilistic interpretation is heavily dependent on the specification 
of initial and final conditions, and these have no place in a stationary state 
solution, which is essentially independent of time. 

The above arguments lead to the conclusion that what we need is an 
approximation for stationary states that has the right nonrelativistic limit 
for bound states. We call them quasistationary states, and define them in 
the following manner for bound particles. 

We assume that the Hamiltonian is independent of time, and we find 
eigenvalues E,  and eigenfunctions g(,+) for the equation 

H++ g~+)(x) = E, g(,+)(x) (4.1) 

We note that they do not lead to eigenvalues and eigenfunctions of the 
full Hamiltonian; if the off-diagonal terms do not vanish, there are no 
eigenfunctions with a vanishing g(-). We now assume that initially we have 
a particle in one such state, with the wave function normalized to 1, and 
that there is no antiparticle in the final state, and solve the problem in the 
usual manner. We obtain a certain amplitude for the antiparticle at the 
initial time, with the corresponding probability density and total proba- 
bility, and the amplitude for the particle at the final time. A numerical 
calculation for a typical scattering problem (Walter & Marx, 1970a) leads 
us to believe that the probability for pair annihilation is small, and that it 
is most likely that the particle remains in the same state. In other words, 
if we have a large number of hydrogen atoms in a stationary state (the 
lack of a dynamical electromagnetic field makes all stationary states stable 
in nonrelativistic quantum mechanics), most of them will remain in that 
state, but a few will have their electrons annihilated by positrons. We also 

t We discuss the problem of relativistic stationary states in more detail in a forthcoming 
paper with J. F. Walter. (Walter & Marx, 1970b.) 
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expect these energy levels to differ little from those calculated for the usual 
stationary states, since the contribution from the antiparticle amplitudes 
has to be small. 

It is obvious that a similar argument produces eigenfunctions and 
eigenvalues for antiparticles when the sign of the potential is changed. 
The eigenvalues will be -E,, and we have to remember that in a relativistic 
theory the energy levels are shifted by an amount equal to the rest energy; 
nonrelativistic negative energies correspond to 

E o - m  < 0 (4.2) 

Actually, we expect these differences to be small in magnitude compared 
to the mass. It might be argued that an increase in the magnitude of the 
potential, or of the coupling constant e, would lead to large differences 
and probably negative values of the E, themselves, mixing particle and 
antiparticle states as in the Klein paradox (Klein, 1929); in such a case, the 
entire formulation in terms of quasistationary states is not valid, which is 
not surprising for an approach that is an approximation in the first place. 

A similar problem arises in the discussion of scattering states (Walter & 
Marx, 1970b), where 

E -  m > 0 (4.3) 

with the added complication that stationary states are not normalizable. 
Both g(+) and g(-) depend on time through exp(-iEt), which is at least 
unusual for a negative frequency part. We can again formulate a theory 
in terms of quasistationary states, but it is likely that the time-dependent 
approach is better suited for a scattering problem. 

5. General Remarks 

We have formulated, in this and other papers, a general framework for 
a relativistic quantum mechanics, both for bosons and for fermions. Many 
details remain to be worked out, and it is possible that some of the equations 
might have to be corrected, but we believe that the high degree of consis- 
tency indicates that our theory is basically correct. 

So far we have refrained from giving a detailed discussion of the relation- 
ship between the equations and experiments carried out either in a labora- 
tory or in thought: Very often these explanations only become possible after 
enough calculations have been carried out to enable one to fully understand 
the nature of the solutions. In this case, the basic problem is the specification 
of final conditions in a process. This is mathematically well defined, but it is 
contrary to our ideas of causality and the dynamical development of a 
system in time. This might not be a limitation of the theory or physics 
itself, but one due to our nature as observers made out of matter, rather 
than antimatter. If  the universe is symmetric with respect to charge con- 
jugation, our environment is certainly a large fluctuation; it is possible that 
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in case we ever observe a region in which antimatter is preponderant, we 
would notice that the Second Law of Thermodynamics and the 'arrow of 
time' are reversed. 

Feynman has used the idea that physical processes are completely laid 
out in space-time, while we gradually advance along our time axis and 
observe them. It is also easier to consider the combination of particle 
scattering with pair annihilation, in which the particle state is determined 
initially while limiting ourselves to demand no antiparticles at the final 
time, than that of antiparticle scattering with pair creation, where the 
antiparticle state has to be specified at the final time. Our experience with 
antiparticles is still rather limited and it is not certain that we will ever be 
able to have large amounts of antimatter; instead of 'preparing' an anti- 
particle system in a final state, we might just select those experiments that 
correspond to predetermined final conditions. This distinction is really not 
well defined, especially when we consider scattering cross-sections, which 
are essentially probabilities to find a system in a certain final state for a 
given initial state, and which are the object of most high-energy experiments. 

We have also consistently worked in the Schr6dinger picture, which we 
find closer to our intuition of a physical process. In the Heisenberg picture, 
which is generally preferred when Lorentz invariance plays a role, the 
dynamics is assigned to the operators while the initial conditions determine 
a constant state vector; we have not developed a corresponding relativistic 
theory in which both initial and final conditions are specified. The preferred 
role of the time as a parameter in the Schr~dinger picture makes manifest 
Lorentz covariance impossible, except as far as the replacement of the 
time axis by an arbitrary time-like direction is concerned. In that case we 
introduce a unit vector n that represents the state of motion of the observer, 
avoiding the unnecessary assumption that the observer is at rest in the 
reference frame. We thus separate the mathematical notion of a system of 
coordinates from the physical one of an observer. The use of the Schr6dinger 
picture also serves to emphasize the conceptual difference between the time 
coordinate, that parametrizes the dynamical development of a system, and 
the space coordinates, which are a set of continuous indices for the general- 
ized coordinates of the system. When we consider the dynamical problem 
of one particle without internal degrees of freedom in nonrelativistic 
quantum mechanics, we can specify a unit vector in the Hilbert space of 
functions of one three-vector variable at the initial time and we calculate 
the subsequent 'motion' of this vector in Hilbert space. Similarly, for the 
corresponding relativistic problem, we consider two such vectors simul- 
taneously; we specify one of them, with norm 1, at the initial time, we 
demand that the other vanish at the final time, and we proceed to compute 
both at all intermediate times. The norms of these vectors are no longer 1, 
and they give the probability of finding the 'particle' in a particle state or 
in an antiparticle state at a given time. Operators other than the Hamiltonian 
have been defined mostly in terms of particle and antiparticle amplitudes 
separately. For instance, there is a position operator for the particle and 
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one for the antiparticle, and it does not appear realistic in terms of the 
present discussion to compute a combined expectation value, using the 
indefinite metric. Strange concepts, such as Zitterbewegung, are obtained 
when we overlook this point, as well as when we make the wrong choice of 
probability amplitudes in configuration space. Most formulations are 
usually carried out in momentum space, where the right amplitudes are 
easier to determine; this choice is important both for relativistic quantum 
mechanics (Marx, 1969a) and for the theory of quantized boson fields 
(Marx, 1969b). It is also plausible that we might be able to restrict the 
definition of most operators to free particles, since measurements are 
normally carried out outside the region of interaction for the process under 
study. 

One practical difficulty of great importance is the lack of familiar pro- 
cedures to deal with operators defined in terms of/~; in particular, we 
know of no simple expression for this operation carried out on a product 
of functions. As a consequence, we have not been able to find a current 
density that conservation of charge should associate with the charge density, 
if we accept that the latter is the difference between the probability densities 
times e (a nontrivial assumption). SchrOder (1964) distinguishes between 
the position of the particle and the position of the charge, a distinction we 
prefer to avoid. We do not know, for instance, how to find the energy levels 
for the quasistationary states, but we expect them to be very close to those 
of stationary states, which are well known and agree with experiment. 
It is a matter of conjecture whether there is any relation between such 
corrections and the Lamb shift. 

In the particular case of spin-�89 fermions, the questions about Lorentz 
and gauge invariance are especially difficult to answer, both for the present 
theory and that by Marx (1970c); we should point out that, in the latter 
case, the spectrum for the stationary states of a particle in a Coulomb field 
is the same as that of scalar particles, in disagreement with experimental 
results for the hydrogen atom. It is possible that a different modification 
of the Dirac equation would also have the required property of leading to 
an indefinite charge density, while having advantages in other respects. 
Nevertheless, we feel that the success of the calculations in quantum 
electrodynamics makes the need of broad changes unlikely. 

A limitation of both nonrelativistic and relativistic quantum mechanics 
is the lack of an interaction with the electromagnetic field, sometimes 
avoided by such devices as the semiclassical theory of radiation. It is 
straightforward to include (Marx, 1970c) a term representing the free 
electromagnetic field, when we start from a Lagrangian density; we are 
led to a problem in the theory of classical fields, which can be interpreted 
in terms of probability amplitudes. The unorthodox specification of initial 
and final conditions, though, leads to the need of introducing gauge 
independent fields (Marx, 1970c; Goldberg & Marx, 1968). Also, the 
equations are no longer linear, due to the interaction term, with the obvious 
consequences for the superposition principle. But when this approach is 
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used (Bjocken & DreU, 1964) in combination with a perturbation expansion, 
we can at least formally obtain the familiar results in quantum electro- 
dynamics. 

We should also point out the role the observer plays in the determination 
of the gauge independent part of the electromagnetic potential. This is 
essentially a nonlocal procedure, and depends on the choice ofhyperplanes, 
perpendicular to n; it is similar to the problem that arises in the separation 
of  the radiation field from the velocity (Coulomb) field in classical electro- 
dynamics. 

Another open question is the need for, and the feasibility of, the 
quantization of these boson fields. Bosons are essentially their own anti- 
particles, when we consider simultaneously groups of bosons, such as the 
three pions, as represented by a real field with three components in isospin 
space. If  we consider the classical field as a system with an infinite number 
of degrees of freedom, we once more have to resort to an observer to 
define the state of the system (at a given time), and it is this classical general- 
ized coordinate which becomes an operator when a canonical quantization 
procedure is used. We would also probably have to carry out this quantiza- 
tion in the Schr~Sdinger picture. 

Alternatives to dynamical boson fields, such as various forms of action- 
at-a-distance theories, do not appear very promising at this time. 

It should be remembered that a real field does not lend itself to the use 
of a causal Green function, but we have to choose either the retarded or the 
advanced one, presumably depending on the specification of the boundary 
conditions for the particles. This would introduce further changes in the 
results of calculations of Feynman graphs in quantum electrodynamics. 

Some results that might seem strange at first sight can be explained with 
due care. For instance, we find (Marx, 1970c) that a charged particle initially 
at rest with no incident radiation field does emit radiation while building 
up an antiparticle amplitude at the initial time; we can interpret this result 
by saying that a particle at rest has a finite probability of  being annihilated 
by an antiparticle with the emission of radiation. 

Further work is needed to make sure that we have a consistent relativistic 
quantum mechanics, and to ascertain whether we can extend it to obtain 
the results of quantum electrodynamics. If  this program is successful, it 
appears likely that it could be further extended to include strong and weak 
interactions of particles and fields. 
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